Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress.
نویسندگان
چکیده
The mitogen-activated protein kinase (MAPK) superfamily consists of three main protein kinase families: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases (JNKs) and the p38 family of kinases. Each is proving to have major roles in the regulation of intracellular metabolism and gene expression and integral actions in many areas including growth and development, disease, apoptosis and cellular responses to external stresses. To date, this cellular signal transduction network has received relatively little attention from comparative biochemists, despite the high probability that MAPKs have critical roles in the adaptive responses to thermal, osmotic and oxygen stresses. The present article reviews the current understanding of the roles and regulation of ERKs, JNKs and p38, summarizes what is known to date about MAPK roles in animal models of anoxia tolerance, freeze tolerance and osmoregulation, and highlights the potential that studies of MAPK pathways have for advancing our understanding of the mechanisms of biochemical adaptation.
منابع مشابه
Plant mitogen-activated protein kinase signaling cascades.
Mitogen-activated protein kinase (MAPK) cascades have emerged as a universal signal transduction mechanism that connects diverse receptors/sensors to cellular and nuclear responses in eukaryotes. Recent studies in plants indicate that MAPK cascades are vital to fundamental physiological functions involved in hormonal responses, cell cycle regulation, abiotic stress signaling, and defense mechan...
متن کاملP20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملTolerance to drought and salt stress in plants: Unraveling the signaling networks
Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activa...
متن کاملFunctional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.
Despite the recognition of H(2)O(2) as a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of cell cycle and cell death, little is known about how the H(2)O(2) signal is perceived and transduced in plant cells. We report here that H(2)O(2) is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells. Using epitope taggi...
متن کاملMitogen-Activated Protein (MAP) Kinases in Plant Metal Stress: Regulation and Responses in Comparison to Other Biotic and Abiotic Stresses
Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 7 شماره
صفحات -
تاریخ انتشار 2003